Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
AIMS Microbiol ; 7(1): 28-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659767

RESUMO

Systemic mycoses have become a major cause of morbidity and mortality, particularly among immunocompromised hosts and long-term hospitalized patients. Conventional antifungal agents are limited because of not only their costs and toxicity but also the rise of resistant strains. Lipopeptides from Paenibacillus species exhibit antimicrobial activity against a wide range of human and plant bacterial pathogens. However, the antifungal potential of these compounds against important human pathogens has not yet been fully evaluated, except for Candida albicans. Paenibacillus elgii produces a family of lipopeptides named pelgipeptins, which are synthesized by a non-ribosomal pathway, such as polymyxin. The present study aimed to evaluate the activity of pelgipeptins produced by P. elgii AC13 against Cryptococcus neoformans, Paracoccidioides brasiliensis, and Candida spp. Pelgipeptins were purified from P. elgii AC13 cultures and characterized by high-performance liquid chromatography (HPLC) and mass spectrometry (MALDI-TOF MS). The in vitro antifugal activity of pelgipeptins was evaluated against C. neoformans H99, P. brasiliensis PB18, C. albicans SC 5314, Candida glabrata ATCC 90030, and C. albicans biofilms. Furthermore, the minimal inhibitory concentration (MIC) was determined according to the CLSI microdilution method. Fluconazole and amphotericin B were also used as a positive control. Pelgipeptins A to D inhibited the formation and development of C. albicans biofilms and presented activity against all tested microorganisms. The minimum inhibitory concentration values ranged from 4 to 64 µg/mL, which are in the same range as fluconazole MICs. These results highlight the potential of pelgipeptins not only as antimicrobials against pathogenic fungi that cause systemic mycoses but also as coating agents to prevent biofilm formation on medical devices.

2.
PLoS Negl Trop Dis ; 13(10): e0007742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589617

RESUMO

Paracoccidioides spp. are thermodimorphic fungi that cause a neglected tropical disease (paracoccidioidomycosis) that is endemic to Latin America. These fungi inhabit the soil, where they live as saprophytes with no need for a mammalian host to complete their life cycle. Despite this, they developed sophisticated virulence attributes allowing them not only to survive in host tissues but also to cause disease. A hypothesis for selective pressures driving the emergence or maintenance of virulence of soil fungi is their interaction with soil predators such as amoebae and helminths. We evaluated the presence of environmental amoeboid predators in soil from armadillo burrows where Paracoccidioides had been previously detected and tested if the interaction of Paracoccidioides with amoebae selects for fungi with increased virulence. Nematodes, ciliates, and amoebae-all potential predators of fungi-grew in cultures from soil samples. Microscopical observation and ITS sequencing identified the amoebae as Acanthamoeba spp, Allovahlkampfia spelaea, and Vermamoeba vermiformis. These three amoebae efficiently ingested, killed and digested Paracoccidioides spp. yeast cells, as did laboratory adapted axenic Acanthamoeba castellanii. Sequential co-cultivation of Paracoccidioides with A. castellanii selected for phenotypical traits related to the survival of the fungus within a natural predator as well as in murine macrophages and in vivo (Galleria mellonella and mice). These changes in virulence were linked to the accumulation of cell wall alpha-glucans, polysaccharides that mask recognition of fungal molecular patterns by host pattern recognition receptors. Altogether, our results indicate that Paracoccidioides inhabits a complex environment with multiple amoeboid predators that can exert selective pressure to guide the evolution of virulence traits.


Assuntos
Amoeba/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paracoccidioides/fisiologia , Microbiologia do Solo , Acanthamoeba castellanii/fisiologia , Amoeba/citologia , Amoeba/microbiologia , Animais , Tatus , Cilióforos , Técnicas de Cocultura , Modelos Animais de Doenças , Fungos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nematoides , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Fagocitose , Solo , Virulência , Fatores de Virulência/fisiologia
3.
J Vis Exp ; (132)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29553507

RESUMO

Fungal infections have become an important medical condition in the last decades, but the number of available antifungal drugs is limited. In this scenario, the search for new antifungal drugs is necessary. The protocol reported here details a method to screen peptides for their antifungal properties. It is based on the broth microdilution susceptibility test from the Clinical and Laboratory Standards Institute (CLSI) M27-A3 guidelines with modifications to suit the research of antimicrobial peptides as potential new antifungals. This protocol describes a functional assay to evaluate the activity of antifungal compounds and may be easily modified to suit any particular class of molecules under investigation. Since the assays are performed in 96-well plates using small volumes, a large-scale screening can be completed in a short amount of time, especially if carried out in an automation setting. This procedure illustrates how a standardized and adjustable clinical protocol can help the bench-work pursuit of new molecules to improve the therapy of fungal diseases.


Assuntos
Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana/métodos
4.
Int J Antimicrob Agents ; 49(2): 167-175, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28108242

RESUMO

Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of micro-organisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 µM in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 µM). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 µM and 2.90 µM, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 µM and 15.3 µM, respectively, for C. albicans, and 11 µM and 22.70 µM, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Peptídeos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Venenos de Vespas/farmacologia , Vespas/química , Administração Tópica , Animais , Anti-Infecciosos/isolamento & purificação , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos Peritoneais/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos/isolamento & purificação , Resultado do Tratamento , Venenos de Vespas/isolamento & purificação
5.
Virulence ; 8(1): 41-52, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294852

RESUMO

The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.


Assuntos
Candida albicans/citologia , Candida albicans/patogenicidade , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Regulação Fúngica da Expressão Gênica , Hifas/imunologia , Hifas/patogenicidade , Hifas/fisiologia , Evasão da Resposta Imune , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Ativação Transcricional , Regulação para Cima
6.
Int. J. Antimicrob. Agents ; 49(2): 167-175, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15472

RESUMO

Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of microorganisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 mu M in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 mu M). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 mu M and 2.90 mu M, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 mu M and 15.3 mu M, respectively, for C. albicans, and 11 mu M and 22.70 mu M, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.

7.
Front Microbiol ; 7: 1844, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917162

RESUMO

The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs) are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp., which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with minimum inhibitory concentration values ranging from 3.12 to 200 µM and an analogous activity against Candida albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well as the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their cytotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.

8.
Front Microbiol ; 4: 353, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24367355

RESUMO

Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...